THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4230 2024-25 Lecture 21 April 2, 2025 (Wednesday)

Chapter 3: Numerical Method

The Projected gradient method

For the problem $\inf_{x \in K} f(x)$, we introduce the following algorithm:

Algorithm : $x_{k+1} = \prod_K (x_k - \rho \nabla f(x_k))$

Definition 1. Let K be a closed set in \mathbb{R}^n . We call the **projection** of a point $y \notin K$ the point x^* such that

$$||x^* - y|| = \min_{x \in K} ||x - y||$$

We denote $x^* := \prod_k (y)$.

Proposition 1. Let K be a closed convex set in \mathbb{R}^n , and $y \notin K$. Then

- $\Pi_K(y)$ exists and is uniquely determined.
- $\Pi_K(y) = x^*$ is the unique point in K satisfying:

$$\langle y - x^*, z - x^* \rangle \le 0, \quad \forall z \in K$$

Proof. 1. For the existence, since the map $x \mapsto ||x - y||^2$ is strictly convex and **coercive** since minimizing a coercive function in a closed set, there exists a minimizer. Furthermore for the uniqueness, by the strictly convexity, the minimizer x^* is unique.

2. We next prove that " $x^* = \prod_K(y)$ satisfies $\langle y - x^*, z - x^* \rangle \leq 0$, $\forall z \in K$ ". For any $z \in K$ and $t \in (0, 1]$, then $tz + (1 - t)x^* \in K$ by the convexity of K. Then, we have $||tz + (1 - t)x^* - y||^2 \geq ||x^* - y||^2$ since x^* is the minimizer. Now, we consider

$$\begin{aligned} \|tz + (1-t)x^* - y\|^2 &= \|t(z - x^*) + x^* - y\|^2 \\ &= \|x^* - y\|^2 + 2\left\langle x^* - y, z - x^* \right\rangle t + \|z - x^*\|^2 t^2 \end{aligned}$$

So, it follows that

$$2 \langle x^* - y, z - x^* \rangle t + ||z - x^*||^2 t^2 \ge 0$$

$$\langle y - x^*, z - x^* \rangle \le \frac{t}{2} ||z - x^*||, \ \forall t \in (0, 1]$$

Since t > 0 is arbitrary, so this gives $\langle y - x^*, z - x^* \rangle \leq 0$ for all $z \in K$.

3. Let \hat{x} satisfy $\langle y - \hat{x}, z - \hat{x} \rangle \leq 0$, $\forall z \in K$. Now, we aim to prove that $\hat{x} = \hat{x^*}$. For all $z \in K$, note that

$$\begin{aligned} \|y - z\|^2 - \|y - \hat{x}\|^2 &= \|y - \hat{x} + \hat{x} - z\|^2 - \|y - \hat{x}\|^2 \\ &= \|y - \hat{x}\|^2 + 2\underbrace{\langle y - \hat{x}, \hat{x} - z \rangle}_{\geq 0} + \|\hat{x} - z\|^2 - \|y - \hat{x}\|^2 \\ &\ge \|\hat{x} - z\|^2 \geq 0 \end{aligned}$$

This proves that $||y - z||^2 \ge ||y - \hat{x}||^2$ for all $z \in K$, by the uniqueness, this proves that \hat{x} is the minimizer, that is $\hat{x} = \prod_K (y)$.

Theorem 2. Assume that $f : \mathbb{R}^n \to \mathbb{R}$ is elliptic in the sense that

- $\operatorname{Hess}(f)(x) \ge \alpha I_n$ for some $\alpha > 0$ and
- $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is *M*-Lipschtiz and $\rho \in \left(0, \frac{2\alpha}{M^2}\right)$. Then $x_k \to x^*$, where x^* is the minimizer of the problem $\min_{x \in K} f(x)$.

Remarks. We define $\operatorname{Hess}(f) = \left(\partial_{x_i x_j}^2 f(x)\right)_{i,j=1,\dots,n}$. We say $\operatorname{Hess}(f) \ge \alpha I_n$ if and only if $\operatorname{Hess}(f) - \alpha I_n$ is semi positive definite.

Example 1. When n = 1, $f(x) = a_2x^2 + a_1x + a_0$ with $a_2 > 0$, then it satisfies the condition.

Lemma 3. Under the same condition, let x^* be the minimizer, then we have

 $\langle \nabla f(y) - \nabla f(x^*), y - x^* \rangle \ge \alpha ||y - x^*||^2$

and $\Pi_K(x^* - \rho \nabla f(x^*)) = x^*$.

Remarks. We will complete the proof for this lemma in next week.

— End of Lecture 21 —